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Abstract

In the bus network problem, the goal is to generate a plan for getting from point

1( to point Y within a city using buses in the smallest expected time. Because bus

arrival times are not determined by a fixed schedule but instead may be random.

the problem requires more than standard shortest path techniques. In recent work.

Datar and Ranade provide algorithms in the case where bus arrivals are assumed to

be independent and exponentially distributed.

We offer solutions to two important generalizations of the problem, answering

open questions posed by Datar and Ranade. First. we provide a polynomial time
• " _rithm for a. mt;cb wider class of arrival distributions, named th,)se with inc,'_'o,ffr:

failure rate. This class includes not only exponential distributions but also uniform.

normal, and gamma distributions. Second, in the case where bus arrival times are

independent and geometric discrete random variables, we provide an algorithm for

transportation networks of buses and trains, where trains run according to a fixed

sched ule.

"Supported in part by a grant from the Alfred P. Sloan Foundation and an equipment grant from

Cornpaq Computer Corporation.





1 Introduction

It,tag, ine I rvit|,_, 14) travel ;u'r_)ss a <'il v by lilt.'.+.',,viLli I IL_'g,tml <Jl'nlittitztizinR the eXln'Cle<l ttJ,tal

t r;_+v+'ltiule. There lllaV be several <lill'er+'nl. p,J+,-+sildePolite.',;. with .-;_mle t'eCllJiI'ing changing

l)llS(,s. If l.+ll:-;,psfolh+)wed a fi.,:e_l schellule, thell sl,;tn<lar<l shorl<'St-l)alh l,e<'hni+lll_'s ',vollhl lie

slllli<'ient to tirol the b,,st travel l)lan. Howevep. l)It:..;arrivals tarel,, l_)lh)w +t li._._'+l.'-;dI<'<luh+

[_".,_'tt when they at+' sItpp_).'-,e_l t.<>). 1311sarti'+als ;ire tn()t'e naluzallv nlo<h'h'<l as ;t tan_l<>u,+

pt<Jtess, in whi(ql ('ase a natural gt)al iS to <l<+velop a [)taxi that tninitxtizes the l<)tal expected

travel thne. Altho,,gh this 6Pl.s n,e+ll/ork, pr_..+_l+:.rl;, al)pears spe(:ilic, it+ is representative of

a witle class of scheduling probhmts where ;tit appropriate plan lUUSt be tlevelope<l with

inc<mlt_lete information ino<leled probabilistically.

The bus network probleul was recently examined by Datar an<l Ranade. in the case

where arrival distributions are independent Poisson processes, i.e. the interarrival tilnes are

exp<mentially distributecl, with tile mean of each distribution fixed for all time. Their results

;Ire based on the key insight that in this case.+ the optimal plan is composed of statements

of the following form: '%Vhen at station i. wait for one of buses X,i_.¥,2 .... : X,k,_ take the

first of these buses that arrives." Moreover, they show that because optimal plans have such

a simple fornL they can be calculated in polynomial time using a dynamic programming

algorithm.
On reflection it is clear that the simple form of the optimal plan is highly' dependent

on the assumption of independent Poisson arrival processes with fixed means. (We will see

examples below.) This assumption is problematic: indeed, the authors admit. "'Perhaps

tile most unt'ounde<l assumption in our model is that of Poisson arrivals of the buses."

As our first res_tlt, we show that an optimal plan has only' a slightly more complex

form when the arrival distributions for buses are assunted to be independent and have

ir+creaaing failure rate. Intuitively. the waiting time for a bus has increasing failure rate if

ihe tut,g,.J ro,I ',_ait. _hu mot," likely .i-e bus is about too arrive. ,\lany natural Inodels +-

im:luding uniforin, normal, and gamma distributions--have increasing failure rate. so our

result may be much more appropriate for real-world data. We describe how the optimal

s(:hedule in this case can be determined in polynotnial time. assunting that we can compute

with the relevant probability (tistributions in an effective manner. Finally. we demonstrate

that assuming a slightly weaker property than increasing failure rate for the bus arrival

distributions is insufticient for our results.

As our second result, we partially answer another open question posed by Datar and

Ranade: how can we handle both buses and trains in our transportation network'? Here

we use the term trains to represent transportation running on a fixed schedule, as opposed

to buses which arrive according to a random distribution, l We demonstrate how to solve

this problem in the case where time is discretized and interarrival times for buses are given

bv discrete geontetric random variables. Note that discrete geometric ran(lonl variables

t We acknowledge that our use of the terms buses and trains may be inacc.urate for practice; still, they
are useful.



l_l,:_i_h'lla.l,lr;llalq_r_J.\iJnali_Jll>I_I _'4)n[in,Jq_Hse.\l_mClllial ranch_ll! v;ll'i;11d_,s,wh4,1"e lh4,

acc_nu;u'v ,d" _h_' alqmmima.thm qh,l._'mls _m the' _ranularit): _d' th,, lilll_' inle['xa] l'_,r the

(lis('r('lizltli(_n. l[,pll('(' ,.)llr result call Im lxsec[ I();tlq_r,.ixiluale the CtHIIilIII_HIs Pt)iSStHI _l.l'l'iVa.l

case. :\Itholl_,h tmr solutiotL is p_d,,ncmlial ix] f.he nlll]ll.,r _t' rilxw steps Ino, h'h,cl. ,,w, I)elim,'e
it may I_e elli,ctive t'_n"proldeuLs _d' a reasoual:,h' size.

1.1 Related work

TIw earliest ret'_,rence we have ft)_tml to bus network problems is t)v Hall [4]. The starting

point of our work is the recent paper by Datar and Ranade. who solved the probh'm of

bus transportation networks when all bus arrivals are independent aml Poisson [3]. An

interesting aspect of this work is the on-line decision making process of the traveler, who

chooses whether or not to take a bus as it arrives. Previous approaches required schedules

that ['orce the rider to commit to a single transit choice upon arriving a_ a stop. rather

than tlexibly choosing based on what bus gets there tirst [4.9].

We also view this work as an interesting connection between algorithmic analysis and

NIarkov decision processes. For more background on Marker decision processes, see for

example I1, 6]; we offer a brief description here. In a Markov decision process, there is an

underlying Markov process with associated actions and rewards. Bv choosing an action

at a state, one affects the progress of the Markov process: the goal is to choose options

that optimize the cumulative reward. In the case of the bus network problem, the actions

in each state are whether or not to take a bus when it arrives, and the function we wish

tO optimize is the expeceed time to the destination. [n the cases we consider here. the

state also explicitly includes a time component, and hence it fits into the framework of

time-depemtent Marker decision processes introduced in [2]. Our work (lemonstrates that

under certain !)robabilistic assumptions, there are efficient algorithms to determine the

acuitA_> Lhau yield an optimal solution in the bus network setting. Our algorithms all ;ely

on dynamic programming, which is the fundamental technique for solving problems based

on Markov decision processes [1.6J.

2 Buses with IFR Waiting Times

2.1 Probability Preliminaries

For completeness we cover basic definitions and properties of distributions we will use

throughout the paper. Further information can be found in texts such as [7] or [8].

We will generally assume throughout that our random variables are non-negative with

absolutely continuous cumulative distribution functions 2 and finite means, although our

res.lts can be moditied to handle other cases, including [br example discrete distributions.

"-'For our purposes, absolutely continuous means that the first derivative exists almost everywhere.

_9



[+'<Jl +t ntnlltq'R+tl i',._' rall_l<Jltl varialJl_, .\ wilh <'utxu,ilal i'-' _li,'-+t rilntl J<m ['Itll<'l i4pll F(/). We

<h'lit,' lit,' ,,-,aar,,i_,al l'llllCl, i(;,ll I,tJ In' [+'(I) ---- I - [;'(l). [+'<Jrlnallv..\" in sahl ItJ have t+!.+'7"l'll,.+_71+l./

f+t++U,l'c t+J.," {<)l" lie l[:[{) il'hJg i;"(1) is ('()ll(';LX, e <)11 th(' .mllJlJort ,Jl" I'_. Thal. is. _'(l) is l,grlJncaul'..

:\llcrtmlivelv. it' f(/) = F'(/) is th,, <'<Jrrespotuling _h,nsitv l'n,.<'lion, the l]tilnzre rale is

r(t) = ./'(l)/[;'(! ). The Cell<Ill.ion that h>R Ib(t)is concave is +'<lttivalent t,> t.lw <'oxt<lition that

l" is in_r,a:..,itLg _ The' fllttcthm r(/)sal, islh,s

f(t) Pr(t < X < t +At ] X > t}
r(t) = _ = lira

F(t) __t_o .St

hlf<Jrmallv, if +\" represents a time spent waiting for a bus and .\" has increasing faill_re rate.

it xneans the probability of the bits su<hh,nlv appearing increases the hmger we wait.

Similarly. X has decrea.+'m 9 fndure rate (or is DFR) if log je is convex on its support, or

equiwflently. X is DFR if r(t) is <[ecreasing.
The mean resi<t,ml life of X at time t is <Mined as

,,,.,,-(t) = E[x - t l x > t].

For example, if X represents the time until a bus arrives, the mean residual life rex(t)

represents the average time until the bus arrives, given that it has not arrived during the

first t units of time. Note that rex(t) is defined to be 0 where _P(t) = 0. The random

variable X is said to have decreasing mean residual life or be DMRL if rex(t) is de<'reasing.

An interesting lemma left to the reader is that ifX is IFR then it is D._IRL. but the reverse
need not hold.

The exponential distribution is both IFR and DFR. Unitbrm distributions ark clearly

IFR. Normal distributions can be shown to be IFR [5]. as can gamma distributions with

certain parameters [7]. In particular, any gamma random variable that is the sum of a

finite number of oxponential ran<t<nn variab!<,s is IFR.

2.2 Form and Computation of the Optimal Schedule

We begin with a theorem that shows tile form of the optimal schedule when the waiting
times for buses are IFR.

Let T(,s. d. h) denote tile expected time to reach d from s using at most h bus changes.

Similarly, let Tb(.s. d, h) be the expected time to reach d from s using at most h bus changes.

given that tile rider gets on bus b now.

We will locus on a single stop s with buses Bt, B>..., Bk stopping there. (For conve-

nience, we do not include s in the variable description of the buses, but leave it implicit.)

We will also use 7', as an implicit shorthand for T&(s,d,h - 1). We let H,; be tile ran-

dora variable representing the waiting time for bus i, and let I_(t) be the random variable

corresponding to the rentaining waiting time, [I_; - t t I_; > t].

aHere we follow the perhaps unfortunate but apparently standard practice and use "increasing" to meaal

"non-decreasing" and "decreasing" to mean "non-increasing" throughout. So IFR really means the failure

rate is non-decreasing, even though IFR is the standard term.



Tlu,rvar_,ali'_vmhlilhmalvtmcmus we menti_m here. [fa bus travelslllr_m_hnmltiph'

sl,qx-,. ,a'e ntu.,,l+ +t+,.,sltntr l.ltat+ tlt_' atrival <list.rilmtit_tts <_t Imses at rach sttq_ att<[ tilt' traveL

;.illl_'S frolll .ntcq_ i'.c, sl_>lj are ill<IplJell_h'lll. With lhis fraxnework, we IILiD.' ;I.S."+IIIIIIP wil.h<)llt

[,J,'+s (if gen('rality that each 1.',II.'_. l.z';Ivels ou[.'_/ 14> +I+ sizl_ll +' lle.'(t :.,;tu];,: our l'l'suli+,N ])ell)w cau

l+e llU)<Jilh'<l so the ri<h,r C]looses the l>esl of several l}ossilJle stops along, the r<mte if" there

are sev,,ral sl<_ps, _++_'will nlake this a,";Slltlll>tiOll ill th(', l, heoreln bl,hp, v. B('I'<)II<I. SlI[Jl)l)Se

it l+us lJ, visits the slop .,+bill the ri<l_'r ch.<+oses not to take it. It is n_+l+cl_'ar what arrival

tlistrilmthm we should line for the next visit by a bus B+. The distribution [[', represents

the waiting t,inte from our arrival: it is trot clear that we shouht use the same _tistribution

after B, itself arrives. Theorem t actually hohls under any distribution tbr the waiting time

of a '+re-visit" by a bus B,.

Theorem 1 Suppose that at every] bus stop, the waiting times for the buses are indepen-

de.nt random variables u:ith increa,sin 9 failure rate. Let Bt. B2 ..... Bk be the buses pa_sin9

through a stop s. sorted in order of increasing T_ (ezpected total remaining travel time to the

destination d using at most h - I further bus changes). Then the optimal travel plan from

s to d using at most h bus changes has the following form: take Bt whenever it arrives;

take B: if it arrives before time t+; take B+ if it arrives before time t:_, and so on, where

the t2 are decreasing (oc >_ t+ > t; >_ ... >_ 0).

ProoL

We first provide the important intuition. It is clear that in the optimal schedule, bus

B_ is taken whenever it arrives, since the expected time to reach d by taking any other bus

must be at least as great as 7"1.

When bus B., arrives, however, the best plan may involve trying to wait for bus Bt.

Clearly. the rider should wait for bus Bt if the expected time to wait for and then take Bt

..... _ I_, ,t i,- h.,,s +}l,_.n +h+' rXl,+'," :,t 'i:p_'_ if the rider now takes B.,. That is..-,uppose E'

arrives at time t. and

7:+,> T_ + E[IV_ (t)] (1)

then it is better to wait Ibr bus Bl. (Note that we have used in equation (1) that the

waiting time tbr bus /3't is independent of the arrival of bus B2.) The reverse is less clear;

even if T_ < 7"1 + E[Wt(t)], perhps it could be better on average to wait for a following

bus. hoping that it is Bt but settling for Ba or Bl if we are unlucky. In fact this is not the

case; we will show that the condition

T2 < Tt + E[I,V_(t)] (2)

is sufficient as well as necessary for taking bus 2 at time t. Using this equivalence, and the

thct that E[LVt (t)] is decreasing in t (since I;V, is assumed IFR). we can conclude that there

is a threshold time t_, such that the rider should take bus B.; if it arrives belbre t_. where

t 2 = inf{t • T2 < TI + E[Wt(t)]}.



.N'_l_, t ltal al liltt_'.'-, ,.vltt't'e there iSC_llialitv ill lhe aln_',_'eXl;,t'esshm. _,ilh_,r waililtR_t" lakiliR

tll_, Ires vi4,hl.n thq, saute eXl.!Cl,e<l tim_', aml hem'e wil.lumt loss of _.m,ralilv we ntav say

lhat the <q_tilnal sche_l,tle takes De if al.I only if it at'riv_,s I_,q'_m' /,;. Flu' at_unu.ut for

_1her Imses will I_,, sitnilar, using iml,u'tiou on the _g,.

T_J show thai comlition (2) is sullicient s_,ettts _lillicult. since ,,st_,lt._iblv we m.e_l to

ccmsi<h'r all I_,>ssibh' otlu.r plans aml arrival Imftet'ns _>t"bus_'s. \V_' av,_i<l mhis c<m_l_h'xity by

inrr,_<l,t4ng au ,_p_._,._.a_?l'um.er_L Let us Sul)p_>se that when bus 2 arriv_'_, we _ive tlw ti<ter

an option to force l.uts B.2 to wait: the rider can then board Jg., and hav_, it, l,_+;t",,<, at his or

h_,r discretion, or board another bias that arrives later. It is ch'ar that this added opt ioll

only helps the rider. ,kloreover. for any plan in the original setting where the rifler waits for

some other bus /3, with i > '2 and boards that bus. there is a plan at least as good in the

optitm setting where the rider exercises the option an¢l takes bus /g.e at the time it wouht

have taken the other bus. Hence we need only consider whether the ri<ler sho_hl take B..,

now. exercise the option (taking B._ in the future), or wait for bus Bt.

ht this context, however, choosing to take bus Be in the future can never be optimal.

This follows again from the fact that E[H,'t (t)] is decreasing, so the longer Be sits idle. the

more appealing Bt becomes. Therefore. the only two potentially optimal choices are to

board and take Bm immediately, or to commit to waiting for Bt. This decision is precisely

the test of E<:luation _'2.resulting in the simple outcome that Be should be taken if and only

if it arrives before time t_.

Now let us consider the similar inductive argument for B_. where j > '2. Let Z,., be

the random variable representing the time to reach d using at most h bus changes, if the

rider waits for one of buses Bt, B=,,.... Bm and uses the optimal policy for these _r+buses.

Similarly. let Z,,.+(t) be the time to reach d after having already waited t seconds at s. We

know the form of the optimal policy on j - 1 buses via the inductive hypothesis. Clearly

it is necessary that

% < (3)

[i)r it to be optimal for the rider to take bus j if it arrives at time t. To show that (3) is

also sutficient, it sutfices to show that Z a_t is DMRL from the option argument.

We use the fact that the distribution of the II,', are IFR to show that Za_t is D.MRL. Un-

tbrtunatelv, a direct argument is somewhat difficult, as a natural expression tor E[Za__(t)I

is ditficult to write: the buses involved with the calculation of Za_t(t) change with t. (The

correct expression is therefore a sum, split according to the condition of when the first

relevant bus arrives.)

We instead show that Za_t is DMRL over successive intervals. Inductively. it suffices

to consider the interval [0, t__t]. The argument is simplified by constructing a new random

variable l')_t, which is similar to Za_t except for the following changes. First. we replace the

waiting time distribution for bus j- 1 by a distribution that is equal to I[)_t ti)r all t < t__t

and is t__t with all remaining probability. That is. ['or the variable })-t we assume that bus

j - 1 arrives at tinte t__ t if it has not otherwise arrived. Note that E[};_t(t)] = E[Za_t(t) ]

5



_,_.,,rif,,. i_,i,,t_.al1).,J; LJ.;is this ,'h;tlij41' ,I,,,'. +-,li,Jl, all'<'ct ihe ,'Xln'<'i,',l frav,,l rin_,, ,_.,'r i.his

itii_,i,+;il+ B,,_tililt_i. l+lJl̀ ij--i "<V(>'as.'.ilitiii' thal if the lJil.'., _, is lJo;u'<l_'_l, llt_' t'<,tilaininR tr;tvel

tillie is i'xixct.lv ilia' exl)ectllt.iotl "/'+ iliSlea_{ til'+++t'an_ltllit vat'ial)it,. A_>itiil. with this chan i.r,e,+,+'_,

siill h;tv,, E'[_,_ _f/)j = +IZ.s_t(t)l <,ver th,, iniet'v;il {().'_j-t+ (by lin,'arii.v,,l',,Xl,eCtathms).

ll_,ti_'_, it slilfic_'s i,j ..+h<Jwthat })_t is [PlT. It> pro, re Z.s_ i is DMITL.
Note that

.,) = prCt+]_, .,:- T+_,)• Pr(++]_..,_ .,:- T+_+)..... .,:-

BIIt the survival functions of every tertn in the product on the right hand sitle art, logc<>ncave

in .c. since the 1_I,;are IFR. Hence the left hand side is logconcave in .r. and since the left

ham[ side is the survival function of };_t. we. have that l';_t is [FR. Hence inductively Zj_ t

is DMRL and the optimal policy has the form given in tile statement of tile theorem.

Finally. note that t_ _< t__ t since the Z,(t) are decreasing in i and the 7", are increasing
iu i.

Thporem l immediately provides an "'elementary" proof of tile main result by Datar

and R.anade (Lemma a.l or [a]).

Corollary 1 When arrivals for all buses are Poisaon, then the optimal schedule has the

foliowing form: take one of buses Bt, B+ .... +B a as soon as it arrives.

ProoE In this case. the ld;;(t) are independent of t. so in the proof of Theorem 1 we must

have that the +_'are all infinity or 0. C3

In the case of Poisson arrivals+ Datar and IRanade show that the optimal schedule and

the resulting expected travel times can be computed exactly elficiently [3]. Theorem 1 also

suggests a natural way of computing an optimal schedule for our more general setting. Let

Q be the maximum number of buses that pass through a station and S be the number

,,t'-.l+,.;,,lt,,+ ',.\;' _vv:_' r'omp'xtc, opti,p.+[ plans involving at nit)st ]_ blls changes ind_+ct.ix+:Iv.

Thzs first involves sorting the buses at each station according to the time to reach the

destination using h - 1 further bus chauges. Then we compute successive values of t_ for

each stop.

For distributions more complex than tile exponential. COlnputing the t2 is non-trivial. It

requires computing the expected time to reach the destination using buses Bt. 192..... /3,_ t.

which may require multiple integrations over the corresponding distributions (to lind the
distribution of the time the first of these buses that the rider will take arrives anti the

corresponding probability for each bus; note the time the bus arrives and which bus it

is are correlated in our case?). In practice we expect computing the t_' would be done

numerically to suitably high precision, or possibly even by Monte Carlo simulation. We

believe that the numerical analysis issues are outside the scope of this paper. Hence we

simply assume the existence of a "black box" calculator for computing the t_. Given this.

we have the following corollary:

Corollary 2 The optimal travel plan u,_der the conditions of Theorem 1 can be coTr_puted

in pol:qnomial time. assumin 9 a black box for corT_puting the t;.

6



l'r,,,Jll• flJ_' v_,la[_,,tk ftc,nlth,, s,,tfiug is (_(h._'(2 h,u,(2), am[ Jl.'_'_' _vi[l I., _')(h,_'Q) <'<.tl-

lJ,tlalh_It, ++,u,qtlg the 14m'k b<+x. C]

2.3 Are IFR distributions necessary?

()m' Itli_ht ask if [F[:I _li>,trilJltli_ms at'_, I'eCllnir1'cl l'_t the m'-,Itlt (_l'The(,r_,Itl I. The l>t'_)l" itself

te<lUit'es only lhat the l,ilm, io r('ach the (h,slination if the ri_h'r ',,,+tits fi,r lower nlllulJet+'d

buses is DNIRL: other sets ¢)l<listrilmtions nlay have this property without b_'ing [FIR. One

mttltra] SllF, g('stiOll is that perhaps if t.he IV, are simply DMRL then this is slttlicient. We

show. h<;,wever, that Theorem t does not hohl under this conclition.

Theorem 2 The results of Theorem I fail to hold if the Li; are oMy DMRL.

Proo[! '¢(_, construct a (:ounterexan_ple. Let .\" be unifi)rm over the range [0.2] U [4.12].

It is simple to check that X is DMRL. Now suppose there are two types of buses traveling

from point a to point b, each with waiting distribution X. Fast buses have a constant

travel time of 1: slow buses have a constant travel time of 2. Clearly if a last bus come the

rider should always take it. Intuitively, however, if there are enough fast buses, the rider

should not take a slow bus that arrives early, because it is likely that a fast bus will shortly

come. ()nee the rider has waited almost two time units, however, he should take a slow

bus if it comes, since no buses arrive in the interval [2, 4] and otherwise he is likely to end

up waiting substantially before a fast bus appears. A calculation shows that if there is one

slow bus and twelve fast buses, we shouht take a slow bus only if it arrives in the interval

[0.558,21. ,:

The counterexample of Theorem 2 can be modified in various ways. For example, we

,';'.n ::lxa_;,_._"_lw ,.]ist:.'il.,it.i,)v .\ so that its s,,pp,-_rt i_ ;, cl,_se_l in!erv'd t)v a&ting e small

weight over the interval [2, 4]. Also. by considering distributions X that consist of more

disjoint intervals, we can construct examples where the proper times to take the slow bus

consist of two or more disjaint intervals. The point behind Theorem 2 is that even thollgh

each fast bus has decreasing mean time to live. the random variable for the time until the

first fast bus arrives does m)t. That is. the family of random variables with decreasing

mean time to live is not closed under minimization, while IFR random variables a,e.

An interesting open question this counterexample raises is whether there is a natural

way to relate the complexity of the waiting time distributions and the complexity of the

form of the optimal schedule.

3 Buses and Trains

We now consider another issue suggested in the conclusion of I3]. and also examined in

[2]: networks with mixed forms of transportation, such as buses and trains. Recall that in

our model buses have an associated random waiting time distribution and an associated



Tramslea,,eon
_ • the hour. halt hour.

headed to B or C. _
Iit/rain, t_

Trains leave at quarter past.
quarter until the hour

Figure l: A basic bus an(l train network. Arrivals of buses from A to B aml from A t() C are

each Poisson with an average wait of ten lllinutes. Travel times are constant. Trains [ron_

B leave on the hour and the half hour: trains from C leave fifteen and forty-live nfinutes
into the hour.

random travel time distribution. We shall use the term train to refer (metaphorically)

to transportation that arrives and departs at fixed absolute times. For example, consider

Figure l. From station A. the rider may catch a bus to either station B or station C. We
assume the travel time from A to B is a constant five minutes and the travel time from A

to C is a constant ten minutes. Arrivals of buses that travel from A to B are a Poisson

process, with an average waiting time of ten minutes: the same holds for buses hom A to

C. At both stations B and C there are trains that run to station D. with the travel time on

the train being one hour. Trains from B leave on the hour and the half hour: trains from
C !cave c", ......n and f,,rt,--[i,,, tt,ituites into the hour

This smlple example highlights that introducing trains leads to substantial dil[iculties.

Of primary importance is the introduction of absolute time: we are not only concerned with

how long the rider has spent at the bus station, as in the problem with only buses, but

the actual time until the trains depart. The expected time to reach the destination D from

train stations B and C is not constant, as it was in the pure-bus setting of Section 2. but

depends on the time the rider arrives at D. Because of this. the ideas behind Theorem 1

no longer directly apply. In particular, there are times where the rider should pass up the

bus to B in order to wait for the bus to C. and other times when the rider should do the

opposite. For example, if a bus to station B arrives at station A just four minutes before

the hour, we know that taking the bus will cause us to wait at station B. The rider is

better off waiting for a bus to station C. and possibly catching a bus to station B later if

necessary.

In this section, we present an approach tbr handling mixed networks of buses and trains

in the case where bus arrival times are discrete geometric random variables, which can be

used to approximate the case of the continuous Poisson arrival process. Our method will



I_, f_ sol _il_ Ih_' pr_)ldq.tn as a lar_{' _lvlL;llvlh' lm_KraltlmilnR I)r(ddqqnt. ,Jr e(luivah'ntlv, as

;i Mai'k(,v ,l,.('i.q,m I)ro('ess. (bvuaixli(' Im)_,ramtitin_ is a stamlar(I tecltni(Im' for .%[arkov

,h'cisi_Jn iJr(,('essvs: aRain, see [1. (.i].) '_,'¢,lirsl, prl,svllt i)ill" alJpi_Jach via the exanll)h, alnlve.

alibi theu clincuss l.he gelieral l'rauiew<irk for lar_t,r l)i'ld)lelns.

\!l'_' tlrst clarify hi're why we lilnil the bllS arrival pl'()l'.ess('s II) I)(' _liscrete gvoineiric

iailtl_)lii ralilltJlli varialdes. Prom i)lir exaniph,, we cali see that it is plJssilJh, in inixe_l bus
anl[ traili livlw_l'ks lhat i.he rifler cti_)oses not I.o take a bits at Sl)llie tiliW, only io take a

IJlIS liii the sainP roule later. If l.he bus arrival process is a geoinotric ralidoin variable, the

t';lct that it bus has previoiisly arrived need not be recorded in the state space: we illav

l])rget that the bus has arrived, its it does not affect the arrival of [Utllre buses. (This is the

nlelllOrylessness property of geonletric and exponential ramloln variaMes.) IlL however, a

bus has a niore complicated arrival process, then the last time a bus on that route arrived

may be relevant information for determining the arrival of the next bus on that route.

Keeping track of such informatioll as the last arrival of each bus wouhl lead to a more

complex, higher-dimensional state. Although handling such a state is theoretically t>asible

using the techniques we suggest, we do not address this issue here.

For our problem, the state space will be pairs (s, t), where s is a station and t is the

current absolute time. To be at the state (s,t) denotes that the rider is still waiting at

station s at time t. In order to make the underlying state space countable, we must assume

time is discretized. Moreover. for the state space to be finite, we must also assume an

endilig time for the process. For example: we may assume that the buses and trains start

rllnliillg at noon and stop running at nlidnight, at which point one must call a friend for a

ride. To penalize this action, we nlake the cost associated with it very high but finite (such

;is two hours).

Discrete geometric random variables can naturally be used to approximate continuous

oxponentially distributed ran,lore variables: the error in the approximation depends on the

gcanularity of the discrete time scale. Hence this apprcaci_ can be used to approximate

behavior when bus arrival processes are Poisson. On the other hand. the number of states

recofired is proportional to the number of discrete time steps being modeled.

Finally. for convenience we will assume here that each bus travels from our current stop

to a unique other stop as opposed to multiple stops. The case where buses have multiple

stops can be handled in an similar fashion (with a possible increase in the size of the state

:;pace).

3.1 The Dynamic Program

We first consider our example. For convenience let us assume that time is discretized in

minutes, and buses leave on the minute. Hence for example the rider may begin at state

(A.11:59 ani), and if a blls arrives in the intervening minute, he may get on the blls and

leave station .4 at 12:00. Of course the rider may choose not to get on the bus. in which

case the rider will be at state (A,12:00 am). We wish to optimize the expected time of

arrival at station D.

9



Flu' In,s,_ilde acl i_,ttn ;u each s_ale c_msist _t' tlu, lz._t _,l' Imnvn we will lake if such a hits

arrive,,.; ,11, 1]1_, sl_lli_Jll _v_,r the liexL lilillllte ll_ul lll;tl, tinL_,, We ;l,,.;sliiue il| this _liscretize_l

',,,_,r.'si,,m.lhat Ims,es ma.v arriv,_, in. the same int,m'va.l..'-,o that ,_mr l,_ossil_l,pacti,,m at _'a.ch.state

is a sort,p_l list _,t' t.,,ls,_,sthai we ",.',,.'illtake if a I_l,,-;arrive.,,, with l,he .sorte_l onh'r ,_i',,ing a

prel'ereuce if I,,,',,',_ Imses ;,,.rt'ive at the sanle l,iule.

lit _mr Siml;,h' e.'<alnple, h,t E(...;. t) be tim ,expe,cte_l l,hlu' to, r,c',tch D t'r,cml slat,p ...,'at lim,p

1. .X_)le lhat EIB. tt aml E(('.t) are trivial to coml)ute. Let ; = I -exp(-O.l) I,, the

probal_ility that a bus hea_h,d for B (or equivalently fi)r C) arrives at A during a minute.
We have the recurrence

ErA. t) = (i - z)-'E(A.t + I) +

z(I - z) min(E(A.t + 1). E(B. t + 6)) +

z(1 - z) min(E(A.t + 1). E(C.t + L1)) +

z 2,nin(E(A, t + 1), E(B. [ + 6), E(C.t + ll)).

We solve this recurrence for decreasing t. From the recurrence we can naturally derive the

correct actions: for example, if E(A, t + 1) < E(B, t + 6) then we will not take the bus to

B. The results for our example are given in Table 1.

Time 0-2 3-4 5-21 22-24 25-30

Action C C.B B B.C C

Table I: At lnore than a few hours from the end of the dav. the optimal strategy has a half

huur cycle. At. states where t is 0 to 2 minutes over the halt" hour, plan only' to take bus C

if it arrives over the next minute.

Theorem 3 TIt_ travel plan for optimizing the expected travel time for networks with buses

and trains, where buses have discrete geometric arrival distributions, can be computed in

time polynomial in the number of stops, the maximum number of buses and trains at a

stop. and the total number of time units simulated. This holds even if bus trauel times are

random uariables that depend on the time of arrival to the station.

Proo£ We provide a more general framework and corresponding bounds on the time to

compute the optimal strategy. We use dynamic programming, computing the E(s,t) in

reverse temporal order; that is, we start at the end of the process, and compute E(s, t)

tbr all s (in any order) using already computed values E(s: u) with u > t. Suppose that a

maximum of Q buses or trains pass through any of S total stops, and our process lasts for

T units of time. For each time state (s,t), there are at most _=0 (_)i! possible actions.
as each ordered subset of the buses and trains are a possible action. However. following

the idea of Theorem 1 we can simplify considerably by sorting the buses and trains by the

expected time to reach the destination if we choose that option at that time. Every action

that is better than waiting at the current stop (i.e, better than E(s, t + 1)) is one that will

tO



I_q,lak<,xn. _ul<l Ihe n<Jl'l_'<lq_a'_lq'l"IJl_.i<l_'s IlLq' IJr_'feteluc<'. Nq,a_,ihat ,,v(,<'an st_rl line lrant_p()l'l

_lJli<Jtts, Iml flu' r+,+'-,lillsIttay iJ_, <lilfer<'ut l't_r clill'<,renl t ituc steps.

[n ()llr exatupfe. '+re haw, thal. the Ires travel tituen are e<_llstalil, lit this case. once xw,

have the sortl'(t _r_h't'. c<milmtin_, /'J(.+.+) can lw <lone in time ()(Q) I_v c_Jntsich'riug, t,h_,

arrival l)<+ssil>ilit.i_'s itt sort._,<] or_h'r. F_>r <'tmveilience suipl)q)s_' there are only l>IL++'.+eS+'It+the

sl.+.l.ti(>n (tr:.'Iili.'+s are +'asv l.o han<lh,. +,isthey ar<' +qther reatlv t.o l<+,av(,,_r l+lot). If the first l)lls
at'riv<,s, we take it: if m+t. but the n+,¢'t>li_lbuts art'ives. ',+ve take that: and s<_Oil. Tli('l'<' aft'

only O(Q) possilJilities to c<msi_h'r. Hence the t<>tal time to conipute optinta] schedules it'I

this case is O(5"TQ log Q).

[f instea<l bus travel times are given by a tixe<l discrete random <listribution. or even

a discrete <tistribution that varies ow, r thne. this only increases the work to conlpute the

expected times to reach the destination bv a factor of O(T). for total work O(STQ logQ +

SOT").

(Note: in the case where bus travel times are given by fixed discrete random variables.

standard convolution techniques may reduce the total work to O(STQ logQ + SQT log T);

however, it appears some additional assumptions are necessary for these methods to apply.

We will explain further in the final version of the papPr.) []

Although the complexity of these solutions may be large when computing over long time

intervals, thev appear feasible for reasonable-sized systems. We also note that another

advantage of this setup is that we can handle value functions more general than the expected

travel time: fl)r example, we couM use the same approach to maxinfize the probability of

reaching our destination bv a certain time.
To smnmarize, this framework improves over previous work in the following respects.

Ii,i comparison to the work of [3]. we show that handling buses with Poisson arrivals and

trains is possible: moreover, we show that the simple form of the optimal schedule we have

:_!umn it'.. S+,c_iot_ 2 i< n,-,t p,,sn, ild,' in tl_is s+'tting. [t', cotnparisc .... ith previous ,,v _rk on

Markov decision processes such as [2, 9], we have shown how to handle the problem of

waiting for multiple buses at a station in the case of a geometric arrival process, which

leads to a relatively simple state space.

4 Conclusions and Future Work

We have expanded previous work on stochastic transportation networks in two ways. First.

we provided an algorithm for finding optimal schedules for bus networks where bus arrival

distributions have increasing failure rate. Second, we have given an algorithm for finding

optimal schedules in mixed networks of buses and trains when the bus arrival distributions

are discrete geometric random variables. We plan to implement these algorithms and test

them on artificially generated and real data in the near future.

There remain many open questions to pursue; we suggest two here. First. last approx-

imation algorithms would be useful, especially' for transportation networks that change

often. Moreover, approximation algorithms mav allow more general distribution classe.s to

ll



I)t, han(lh'_l. _ev(,n,l. ,,v,, tx_ight <:onsi(h,r the situati(,n ,,vIxen I,lw lran.-;Ij()rlati_m m,l,,v¢)uk luav

I._rovich, a&lisi(mal inl'_)rtnal, i<m. For exatttph'. I>u:-;es,'(luippe_l with _h,dml posit i(minK eql,il>-

II1('11I, ;llld Vv'il'_l,hq.iN Ct)lll|nllllical, i()ll IIHl.y t)( + able t.o lm)vi(h' their posit.ion. In this SillI_.I.I i()ll.

it ri(l("r (l('t4q'luillill K whet, her <)r not t,t) g(,t, OIl a hlls l|lgI.V haV(? llli)r(' (l('l;I.il(,<l illf_;qlllalit)l|

availal)h, ab,)ut th(: 'vv;).il.iltg tilli(_ f(.)r ()t.h('r 1311s(,s.
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